Jadwal Sholat

jadwal-sholat

Search

Rabu, 13 September 2017

WCDMA 3G Baseband Capacity

Topik kali ini adalah coretan agar tidak hilang mengenai capacity 3G pada vendor Nokia. di 3G baseband dimensioning semuanya terletak pada license baik di HSDPA maupun HSUPA. Meskipun fitur HSDPA dan HSUPA sudah diaktifkan namun kita perlu inject license agar sistem dapat bekerja untuk perhitungan berapa user yang dapat dilayani.
License-license ini dikenal dengan sebutan HSDPA processing set dan HSUPA processing set.
HSDPA dan HSUPA scheduler tidak menghabiskan CE License namun tetap membutuhkan CE License yang terletak pada System Module rel 1(FSMB).

REL99 License
- disupport oleh system module rel 1 FSMB, rel 2 FSMC/D/E , dan rel 3 (FSMF)
- HSPA scheduler rel 2 dan rel 3 tidak memerlukan R99 CE license
- HSPA scheduler rel 1 masih memerlukan R99 CE license

HSDPA Processing Set
- ada 3 jenis tipenya yaitu procset 1, procset 2, dan procset 3
Procset 1 mampu handle 32 user dengan max throughput 7,2 Mbps
Procset 2 mampu handle 72 user dengan max throughput 21 Mbps
Procset 3 mampu handle 72 user dengan max throughput 84 Mbps

Operator dapat mengkombinasikan procset untuk diaktifkan di ketiga sektornya, misalnya procset 1 dengan 2, 2 dengan 3 ,dst. Namun untuk procset 1 tidak bisa dikombinasikan bila confignya mengandung dua buah procset 1. Biasanya operator lebih memilih procset 2 karena faktor biaya yg lebih murah dari procset 3 sedangkan jumlah usernya sama yaitu 72.
Gimana sih cara simpel menghitungnya?
Misal pada sector 1 setelah dilihat ada 500 user, maka bagi saja 500 dengan 72 maka hasilnya sama dengan 6.9 atau dibulatkan menjadi 7 buah license yg diinject (dapat dilihat pada BTS manager).
 
HSUPA Processing Set
Untuk HSUPA procset dapat menghandle sebanyak 24 user dengan max throughput 5.8 Mbps.

CCCH (Common Control Channel) Processing Set 
- License ini valid khusus untuk rel3 termasuk config SM rel 2 dan SM rel 3.
- 1 CCCH Procset sama dengan 1 subunit (SM rel2) atau 0.5 subunit SM rel3 baseband capacity.

Local Cell Grouping (LCG)
konfigurasi LCG diperlukan jika suatu site menghandle lebih dari 6 cell hingga 12 cell. , ataupun untuk MORAN (Multi Operator RAN).
Operator dapat mendefinisikan LCG dalam 2 cara yaitu Frequency layer based (Flexible baseband allocation) 
dan Sector based (fixed baseband allocation).
Flexible baseband allocation = semua cell dari frequency layer harus didekasikan pada local cell yang sama. Hingga 4 LCG dapat dicreate dengan pure HW rel2/rel3 (RF+SM) case.
 

Apa saja yang diperlukan bila mengimplementasi flexible baseband ? 
- frekuensi keseluruhan harus dialokasikan ke LCG yang diberikan
- pure HW rel2/rel3 diperlukan untuk flexible baseband pooling.
Keuntungannya :
- HSPA di kedua sistem module dengan lebih dari 1 LCG
- LCG baseband capacity dapat diadjust sesuai dengan LCG yang dibutuhkan 
- Lebih banyak HSUPA scheduler (1 HSUPA scheduler per LCG)
- DC-HSDPA memungkinkan jika kedua DC carrier menggunakan LCG yang sama

Fixed Baseband Allocation, keseluruhan atau sebagian frequency layer didedikasikan ke LCG.
Apa saja yang diperlukan bila mengimplementasi fixed baseband ?
- 2 system module rel2 atau rel3 (SM rel2 + SM rel3)
- Pure rel2/rel3 HW BTS configuration
Keuntungannya :
- HSPA pada kedua System Module dengan 2 LCG
- HSUPA scheduler yg lebih banyak (1 HSUPA scheduler per LCG) dan baseband capacity untuk HSPA traffic
- memungkinkan untuk DC HSDPA (DC sector split between LCGs)
- meningkatkan softhandover factor

1 FSMF = 5.5 subunit
1 FBBA = 6 subunit

 

Rabu, 02 Agustus 2017

Optim Parameter LTE Untuk Event Festival

Berikut adalah sumber dari telecomsource  biar gak hilang dicatet dulu.
Tapi ini untuk vendor apa yah... Huawei tampaknya

LTE Parameter Optimization Proposal for Festival Event Sites


Hello,

Here I have listed some parameters for H// LTE which can be changed on case of festival event sites.

1) SRI Adaptive Switch 
Activate SRI Adaptive Switch : MOD GLOBALPROCSWITCH: SriAdaptiveSwitch=ON


  • If this parameter is set to ON, the eNodeB adjusts the SRI period based on the SRI algorithm so that the number of admitted UEs can reach the cell capacity.
  • If this parameter is set to OFF, the maximum number of admitted UEs depends on the user-defined SRI period.


2) PUCCH resource adjustment switch
Activate PUCCH resource automatic adjustment Switch : PucchAlgoSwitch=PucchSwitch-1


  • If this switch is turned on, PUCCH resource adjustment achieves better utilization of PUCCH resources and reduces uplink control signaling overhead. When the PUCCH resources decrease, however, CQI resources may need to be reconfigured for a few UEs. The reconfiguration consumes certain downlink resources.
  • If this switch is turned off, uplink control signaling overhead increases.


3) CQI adjustment switch
Activate CQI adjustment step vary switch : MOD CELLALGOSWITCH:CQIADJALGOSWITCH=StepVarySwitch-1; 


  • If this switch is turned on, the IBLER convergence rate can be adjusted based on site scenarios, increasing the downlink rate based on scenarios.
  • If this switch is turned off, the IBLER convergence rate cannot be adjusted, decreasing the downlink rate based on scenarios.


4 ) Activate SRS
Activate SRS : MOD SRSCFG: SrsCfgInd=ON;


  • If this parameter is set to BOOLEAN_TRUE, SRS is supported, and higher performance gains are obtained in features depending on SRS measurements, such as beamforming (BF) and uplink frequency selection. However, the cell peak rate in the uplink decreases due to SRS overheads.
  • If this parameter is set to BOOLEAN_FALSE, no SRS resource is available in the cell, and no UE is configured with SRS resources, and therefore the optimum cell peak rate in the uplink can be obtained. However, lower performance gains are obtained in features depending on SRS measurements.


5) Activate SRS Adaptive Period
Activate SRS adaptive period :MOD SRSADAPTIVECFG: SrsPeriodAdaptive=ON



  • If this parameter is set to ON, the eNodeB adaptively adjusts the SRS period for UEs that will access the cells under the eNodeB. The adjustment is based on the load of SRS resources and achieves a tradeoff between the number of UEs served and network performance.
  • If this parameter is set to OFF, the eNodeB uses a fixed SRS period for UEs that will access the cells under the eNodeB.



6) Set Adaptive RBG Allocation Strategy
Set Adaptive RBG Allocation Strategy : MOD CELLDLSCHALGO: LocalCellId=x, RbgAllocStrategy=ADAPTIVE



  • If this parameter is set to ROUND_DOWN, all allocated RBs are fully utilized, spectral efficiency is high, but cell throughput is relatively low.
  • If this parameter is set to ROUND_UP, a few allocated RBs are not utilized, spectral efficiency is low, but cell throughput is relatively high. Compared with setting this parameter to ROUND_UP, setting this parameter to ADAPTIVE does not waste RBs when the number of required RBGs is less than 1.


7) Set Adaptive Enhanced CFI 
Set Adaptive Enhanced CFI : MOD CELLPDCCHALGO:PdcchSymNumSwitch=ECfiAdaptionON;

  • If this parameter is set to OFF, the number of OFDM symbols occupied by the PDCCH is fixed and cannot be dynamically adjusted.
  • If this parameter is set to ON, the number of OFDM symbols occupied by the PDCCH is dynamically adjusted based on the number of required CCEs, and therefore cell downlink throughput increases.
  • If this parameter is set to ECFIADAPTIONON, the dynamic adjustment of the number of OFDM symbols occupied by the PDCCH considers cell downlink throughput, and therefore can reach higher throughput when downlink frequency selective scheduling is enabled.


8) Set Adaptive RBG Allocation Strategy
Set Adaptive RBG Allocation Strategy : MOD CELLDLSCHALGO: LocalCellId=x, RbgAllocStrategy=ADAPTIVE



  • If this parameter is set to ROUND_DOWN, all allocated RBs are fully utilized, spectral efficiency is high, but cell throughput is relatively low.
  • If this parameter is set to ROUND_UP, a few allocated RBs are not utilized, spectral efficiency is low, but cell throughput is relatively high. Compared with setting this parameter to ROUND_UP,setting this parameter to ADAPTIVE does not waste RBs when the number of required RBGs is less than 1.



9) Set Adaptive Enhanced CFI 
Set Adaptive Enhanced CFI :MOD CELLPDCCHALGO:PdcchSymNumSwitch=ECfiAdaptionON

  • If this parameter is set to OFF, the number of OFDM symbols occupied by the PDCCH is fixed and cannot be dynamically adjusted.
  • If this parameter is set to ON, the number of OFDM symbols occupied by the PDCCH is dynamically adjusted based on the number of required CCEs, and therefore cell downlink throughput increases.
  • If this parameter is set to ECFIADAPTIONON, the dynamic adjustment of the number of OFDM symbols occupied by the PDCCH considers cell downlink throughput, and therefore can reach higher throughput when downlink frequency selective scheduling is enabled.



10) Activate PDCCH Capacity improvement Switch
Activate PDCCH Capacity improvement switch : MOD CELLPDCCHALGO: LocalCellId=0, PdcchCapacityImproveSwitch=ON;
Setting this parameter to ON offers the following benefits:



  • PDCCH capacity is expanded, and therefore cell throughput increases;
  • the uplink CCE allocation success rate increases, and therefore the access success rate increases and service drop rate decreases;
  • the CCE allocation success rate increases, and therefore cell throughput increases.

11) UL Interference Randomization
Set Adaptive Interference Randomization : MOD CELLULSCHALGO: LocalCellId=x, UlRbAllocationStrategy=FS_INRANDOM_ADAPTIVE;
  • If this parameter is set to FS_INRANDOM_ADAPTIVE, inter-cell interference decreases. Both throughput of cell edge users (CEUs) and the total cell throughput increase when the cell is lightly loaded, and throughput of CEUs increases but the total cell throughput may decrease
  • When the cell is heavily loaded. Setting this parameter to the default value FS_NONFS_ADAPTIVE has no impact on network performance



12) Activate DMRS Scheduling for Uplink timing
Activate the mechanism of optimized demodulation reference signal (DMRS) scheduling for uplink timing : MOD TATIMER: LocalCellId=0, TimingResOptSwitch=ON



  • If this parameter is set to OFF, more DMRS resources are consumed for uplink timing when sounding reference signal (SRS) resources are not configured for UEs in heavily loaded cells where there is a large number of UEs. As a result, the access success rate and uplink and downlink throughput decrease, and the service drop rate increases.
  • If this parameter is set to ON, DMRS resources used for uplink timing decrease. As a result, the access success rate and the uplink and downlink throughput do not decrease, and the service drop rate does not increase in heavily loaded cells where there is a large number of UEs. However, the uplink and downlink throughput of UEs that move faster than 120 km/h decreases because of delayed uplink timing.



13) Deactivate UL Pre-allocation
Deactivate UL Pre-allocation : MOD CELLALGOSWITCH: LocalCellId=0, UlSchSwitch=PreAllocationSwitch-0;



  • if preallocation is enabled, the delay of uplink data transmisstion is shortened, but the uplink interference and UE power comsumption are increased.
  • if preallocation is disabled, the delay of uplink data transmission is increased, but the uplink interference and UE power consumption are decreased.



14) Activate Special Signaling Re-transmission
Enable Special Signaling Re-transmission : MOD ENODEBALGOSWITCH: HighLoadNetOptSwitch=SPECSIGRETRANSOPTSWITCH-1;




15) PDCCH & PDSCH Downlink Scheduling Balance


  • If this switch is on and the number of UEs in the cell is large, the number of retransmitted inter-RAT handover commands and the RRC Connection Release messages decreases, and less air interface resources are consumed.
  • If this switch is off, some UEs may not reply to HARQs/ARQs of inter-RAT handover commands, which causes the eNodeB to retransmit inter-RAT handover commands repeatedly. In addition, some UEs may not send ACK to the eNodeB in response to the RRC Connection Release messages, which causes the eNodeB to retransmit the RRC Connection Release messages repeatedly. When one of the preceding conditions is met, uplink and downlink throughput in the cell may decrease.


16) DataThdInPdcchPdschBal :
DL Scheduling : MOD CELLDLSCHALGO: LocalCellId=0, DataThdInPdcchPdschBal= 17000, UeNumThdInPdcchPdschBal=100;



  • Setting this parameter to 0 has no impact on network performance.
  • Setting this parameter to a non-zero value increases the physical resource block (PRB) usage in the PDSCH and downlink throughput in large traffic volume scenarios.
  • A smaller value of this parameter results in a higher probability of a bearer being determined as a bearer with large packets.
  • A larger value of this parameter results in a lower probability of a bearer being determined as a bearer with large packets.



17) UeNumThdInPdcchPdschBal : 

  • If the number of synchronized UEs in the cell is less than this parameter value, the network performance is not affected.
  • If the number of synchronized UEs in the cell is greater than or equal to this parameter value, PDCCH and PDSCH resources are balanced, increasing PRB usage in the PDSCH and downlink throughput in large traffic volume scenarios.



Please share this with your friends and comment if you would like to add some more parameters.

Kamis, 01 Juni 2017

Cara Ubah Kolom ke Baris Dengan Notepad++

Biar ga lupa untuk suatu waktu dibutuhkan lagi, mari kita catat cara mengubah kolom menjadi baris dengan notepad++,
Ada bedanya dengan kita menggunakan excel yaitu di excel masih terpisah dengan suatu kotak range sedangkan dengan notepad menjadi satu baris dan pemisahnya bisa kita define sendiri.

Contoh untuk mengubah baris ke kolom dengan pemisah tanda koma :
A
B
C
menjadi A,B,C



Ketik ctrl H atau Replace
Isi kotak find what dengan \r\n
dan Replace dengan tanda yang kita inginkan.


Dan selesai sudah.




Kamis, 26 Januari 2017

RSI Planning

Seorang teman ada yang bertanya apakah ada formula untuk RSI (Root Sequence Index) seperti halnya dengan PCI (Physical Cell ID) ?
Biar gak hilang berikut yang sudah pernah saya cari jawabannya, bantuan sumber dari Lauro

Plan RSI biasanya berbeda 10 antar cell satu dengan lainnya, nah yang saya tahu nilai 10nya itu dari sini :
contoh kalo cyclic shiftnya =119 maka
# of rows = ceiling (64 / (integer (sequence length/cyclic shift)))
# of rows = ceiling(64 /(integer(839/119))) = 10
64 adalah jumlah RACH preamble yang ditransmisikan via parameter broadcast di SIB2, parameternya adalah :
a)     RootConfigurationIndex
In LTE, there are 838 root Zadoff-Chu sequences available for preambles. The length of each root sequence is 839. RootConfigurationIndex, informs the UE via SIB2 which sequence is to be used.
b)    ZeroCorrelationZoneConfig.
One root sequence can generate several preambles by cyclic shift. One or more root sequences are needed to generate all preambles in a cell. The UE starts with the broadcasted root index and applies cyclic shifts to generate preambles. ZeroCorrelationZoneConfig points to a table where the cyclic shift is obtained from.
The smaller the cyclic shift, the more preambles can be generated from a root sequence. Hence, the number of sequences needed to generate the 64 preambles in a given cell is:

                        # of rows = ceiling (64 / (integer (sequence length/cyclic shift)))
Btw 119 adalah contoh seperti di perhitungan ini untuk dapat cell radiusnya :
sequence length zadoff chu = 839
Based on 3GPP, the preamble sequence length is 839 and spans 800 milliseconds.

Tambahan dari slide Huawei:

Pusing gak melihat rumusnya ? :D saya juga pusing hahaha, ya ternyata ada kok tabelnya jadi tinggal lihat saja tabel berikut ini untuk cara cepat dapat Ncs, cyclic shift length dengan cell radius :



Senin, 01 Agustus 2016

Sebuah Ucapan atau Kalimat Dari Seorang Expert

Daripada hilang begitu saja ditelan waktu dan saya lupa lagi, maka akan saya tuliskan kata-kata teknikal dari expert telekomunikasi, mungkin saya membutuhkannya suatu saat dan pastinya membantu memahami teori yang mungkin juga belum pernah dituliskan di buku.

So here it is :

1. "Better DCH usage means once R99 user doesn’t do anything, they’ll downswitch to FACH and then left channelization code hopefully can be used by HS users."

2.  Saya bertanya "Apakah test uplink throughput ada hubungannya dengan TX power PUSCH?" ,kemudian dijawab : "Itu menunjukkan UE butuh power seberapa besar, Based on behaviournya, suspect memang ada UE problem"

3. Ini untuk masalah uplink throuhput yang sangat kecil. "Boleh coba cek parameter2 :
p0NomPu(c/s)ch, ulpcAlpha, ulpcLow(lev/qual)(C/S)ch, ulpcUp(lev/qual)(C/S)ch, iniMcsUl, iniPrbsUl, Sama coba dicek juga, performance RSSI dalam hourly (PUCCH & PUSCH)nya..Seperti apa trendnya"

4.  Ini relasinya ke postingan di http://telecommunicationforall.blogspot.co.id/2015/11/identifikasi-masalah-uplink-throughput.html soal upling yang bermasalah.  "Saya coba menjawab query dari Om Panji :
-          Untuk Performance Uplink RSSI, based on hourly stats, kemarin site A & site B masih di bawah -105 dBm (masih normal)
-          Untuk P0NomPusch/Pucchnya sudah standar sama seperti site2 yang lain, -106 & -80 dBm klo ga salah.
-          Untuk BLER, kemarin sekilas mirip2 antara sector yang failed & yang sukses
-          Untuk high traffic case, bisa dicek di hourly stats numrrc connected dan sign_conn_rej_rrmrac     
      --> rejection karena pucch sudah overload
-          Utk tipe scheduler, masih sama dengan site yg lain, pake proportional fair
-          Power Headroom, dari Actix itu bisa keliatan, klo case 2 site diatas sama, dimana power headroomnya kecil --> inline dengan power Tx & power PUSCH yang tinggi
Kondisi ideal itu power Tx & PUSCH ga terlalu besar, sehingga masih ada power headroom untuk user lain
-          Untuk VSWR, sayangnya hanya bisa monitor untuk FDD melalui RF diagnostic (itupun masih failed)
Nah, apabila dah ganti berbagai macam UE hasilnya sama saja, coba hal berikut :
-          Perform Speedtest, apakah Uplinknya masih sama, kalau bisa sih ada nemo handy dari tim X
-          Kalau masih kecil, suspect ada masalah sama antennanya (port Rx)
-          Kita eskalasi ke tim transport untuk cek apakah settingan QoS uplinknya dah oke."
-          
-    5. "Pada WCDMA itu ada data drivetest yang serving cell/active set(umumnya diset 3), lalu monitored set (sudah tercreate neighbornya), dan detected set(belum tercreate neighbornya)."
    
     6. why idle UEs were not released?
   :there are inactivity timers running. When there is no communication in UL and Dl and on signaling bearers then the call is released. In case voice bearers are established then this could take some time because there are different timing requirements.
     
For why it is nCqiRb = 2 and cqiPerNp = 40ms?
: the number of CQI/ri resources is the same for both but in case of nCqiRb == 2 there are more options per tti to allocate the CQI/Ri resource with the recommended distance to scheduling request. With this configuration the algorithm can allocate the CQI/RI much better to prevent the fragmentation developer have mentioned before.

    7. Kesimpulan transport problem :





-   8. Bersambung
-          


Jumat, 29 Juli 2016

Online Coverage Simulation

 Sebelumnya terima kasih untuk temanku yang memperkenalkan online coverage tool simulation ini secara tidak sengaja.
Mengapa gak dari dulu saya tau ya? hahaha
Selama ini saya plan tilting untuk coverage planning hanya mengandalkan "feeling" dan simulasi planning tool seperti MCP, Atoll, Unet, dll. Ternyata di internet ada tool simulasi instan untuk memperkirakan sejauh apa coverage dari suatu site.
 Memang sih untuk tools online yang satu ini kelebihannya adalah kita akan mendapatkan rekomendasi secara cepat untuk tinggi antena dan tilt antena, tetapi kekurangannya  adalah kita tidak dapat mengetahui berapa level dBnya dan tidak tersedia pilihan Mech tilt dan Electrical Tiltnya, dan juga simulasi hanya untuk single site saja. Sedangkan kelebihannya adalah simulasi ini cukup membantu kita untuk memprediksi secara cepat guna mendapatkan rekomendasi berapa tilt atau height yang ingin diubah, ditambah lagi kalkulasi ini sudah mempertimbangkan kontur atau gedung yang dibaca melalui google earth.
 Idenya seperti ini : cari site yang diduga sebagai overshooter, atau spot yang poor coverage lalu simulasikan di online tools ini. Setelah mendapatkan datanya, baru kita masuk ke analisis yang lebih detil lagi dengan menggunakan planning tool yang kita miliki untuk kemudian kita run global beberapa site di area yang ingin kita periksa.

Silahkan dicoba di http://www.gyokovsolutions.com/G-NetTilt/G-NetTilt.html


Anda harus menginstall terlebih dahulu google earth dan browser yang digunakan adalah firefox (entah browser lain bisa juga atau tidak).
Data yang diinput di tool itu adalah :
- Longitude, Latitude atau create site manual di peta
- Antenna Height
- Antenna Beamwidth Vertical dan Horizontal, nilainya bisa anda cari di spesifikasi antena yang digunakan.

Kamis, 28 Juli 2016

Contoh Cellref Actix WCDMA dan LTE

  Apakah sedang mencari format cellref untuk Actix?
Berikut adalah contoh format cellref actix untuk teknologi 3G WCDMA :
Buka excel file seperti biasa kemudian ketik pada baris pertama A1
; #NetworkData - datafile

  Kemudian di bawahnya mengikuti gambar contoh berikut ini
(WCDMA_Site) , (Site ID cukup 1 buah saja jika sitenya colo atau mempunya carrier lebih dari 1), (Site ID sama dengan kolom sebelumnya), (Latitude site), (Longitude site), (kosong), (Nama RNC)


Jika sudah memasukkan data site seperti di atas, lalu sambungkan di baris bawahnya dengan data cellnya yang berisi azimuth dll seperti contoh gambar di bawah ini :


   Pada contoh di atas ada site berjumlah 2 buah dan masing sitenya mempunyai 4 carrier. Format di kolom awal penulisannya adalah WCDMA kemudian dilanjutkan dengan data site ID, sector, azimuth, beam antena, kurung kurawal, Scrambling Code, MCC, MNC, LAC, cell id, kurung kurawal, kurung kurawal, Tech name, kurung kurawal, UARFCN, tinggi antena, dst.
Save as text files, silahkan coba import di actix anda.

  Untuk format LTEnya adalah sebagai berikut :
Contoh saya ambil sitenya ada 3 dan cellnya hanya untuk site pertama saja dengan teknologi FDD dan TDD


 Sama dengan WCDMA, format site dan cell ini digabungan dalam 1 worksheet dan save menjadi bentuk txt files.


Pada bagian cell penulisan di kolom awal adalah LTE_Cell lalu diikuti dengan Site ID, Sektor ID, Azimuth, Beam, kurung kurawal, UARFCN, PCI, MCC, MNC, kurung kurawal, kurung kurawal, enodeb ID, Tech name, Status, Cluster, Clutter type, dll.

Sebenarnya masih ada cara lain lagi yaitu dengan memasukkan database normal kita ke data network explorernya actix, kemudian samakan header dengan data kita.


Sementara itu dulu, selamat mencoba.

Rabu, 27 Juli 2016

Events and SIB

Pada umumnya event-event yang terjadi pada mobile communication dijabarkan pada tabel berikut :

Event Type
Description
Event A1Serving becomes better than threshold
Event A2Serving becomes worse than threshold
Event A3Neighbour becomes offset better than serving
Event A4Neighbour becomes better than threshold
Event A5Serving becomes worse than threshold1 and neighbour becomes better than threshold2
Event A6Neighbour become offset better than S Cell (This event is introduced in Release 10 for CA)
Event B1Inter RAT neighbour becomes better than threshold
Event B2Serving becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
Event C1CSI-RS resource becomes better than threshold
Event C2CSI-RS resource becomes offset better than reference CSI-RS resource

Kemudian kita sering mendengar tentang System Information Block atau SIB ,

berikut kategori SIB yang ada pada sistem telekomunikasi mobile.

SIB(System Information Block) LTE

SIB 1 
    i) Cell Access Related Information - PLMN Identity List, PLMN Identity, TA Code, Cell identity & Cell Status
    ii) Cell Selection Information - Minimum Receiver Level
    iii) Scheduling Information - SI message type & Periodicity, SIB mapping Info, SI Window length
SIB 2
    i) Access Barring Information - Access Probability factor, Access Class Baring List, Access Class Baring Time
    ii) Semi static Common Channel Configuration - Random Access Parameter, PRACH Configuration
    iii) UL frequency Information - UL EARFCN, UL Bandwidth, additional emmission
    iv) MBSFN Configuration
SIB 3
    i) Information/Parameters for intra-frequency cell reselections
SIB 4 
    i) Information on intra-frequency neighboring cells
SIB 5 
    i) Information on inter-frequency neighboring cells
SIB 6 
    i) Information for reselection to UMTS (UTRAN) cells  
SIB 7 
    i) Information for reselection to GSM (GERAN) cells  
SIB 8 
    i) Information for reselection to CDMA2000 systems
SIB 9 
    i) Home eNodeB name – for future LTE femtocell applications
SIB 10 / SIB 11
    i)  ETWS (Earthquake and Tsunami Warning System) information
SIB 12 
    i) Commercial Mobile Alerting System (CMAS) information.
SIB 13 
    i) MBSFN (eMBMS) Area Configuration
    ii) MCCH Configuration
SIB 14 
    i) Extended Access Barring
SIB 15 
    i) MBMS SAI (Service Area Identities) Configuration
SIB 16 
    i) GPS Related Informatin
SIB 17

i) WLAN Configuration for LTE-WLAN Interworking


Referensi lainnya untuk LTE SIB :

LTE system information blocksDescription
MIBCarries physical layer information of LTE cell which in turn help receive further SIs, i.e. system bandwidth
SIB1Contains information regarding whether or not UE is allowed to access the LTE cell. It also defines the scheduling of the other SIBs. carries cell ID, MCC, MNC, TAC, SIB mapping.
SIB2Carries common channel as well as shared channel information. It also carries RRC, uplink power control, preamble power ramping, uplink Cyclic Prefix Length, sub-frame hopping, uplink EARFCN
SIB3carries cell re-selection information as well as Intra frequency cell re-selection information
SIB4carries Intra Frequency Neighbors(on same frequency); carries serving cell and neighbor cell frequencies required for cell reselection as well handover between same RAT base stations(GSM BTS1 to GSM BTS2) and different RAT base stations(GSM to WCDMA or GSM to LTE or between WCDMA to LTE etc.) . Covers E-UTRA and other RATs as mentioned
SIB5Carries Inter Frequency Neighbors(on different frequency); carries E-UTRA LTE frequencies, other neighbor cell frequencies from other RATs. The purpose is cell reselection and handover.
SIB6carries WCDMA neighbors information i.e. carries serving UTRA and neighbor cell frequencies useful for cell re-selection
SIB7carries GSM neighbours information i.e. Carries GERAN frequencies as well as GERAN neighbor cell frequencies. It is used for cell re-selection as well as handover purpose.
SIB8carries CDMA-2000 EVDO frequencies, CDMA-2000 neighbor cell frequencies.
SIB9carries HNBID (Home eNodeB Identifier)
SIB10carries ETWS prim. notification
SIB11carries ETWS sec. notification


Sedangkan ini untuk 3Gnya :


System information block in UMTS typeFunction(Information carried)
SIB1NAS information,timer related information mainly used in IDLE/CONNECTED Mode
SIB2available URAs(max. 8 URAs in a cell)
SIB3cell selection/reselection parameters used by UE in IDLE mode, if SIB4 is not present then it can also be used by UEs(in CONNECTED MODE).
SIB4cell selection/reselection parameters used by UE in CONNECTED mode,if not present SIB3 to be used by UE
SIB5Carry info. on common physical channels(PICH/AICH/P-CCPCH/PRACH/SCCPCH) for UE(in IDLE mode), in the absence of SIB6 it is also used for UE in CONNECTED state.
SIB6Carry info. on common physical channels(PICH/AICH/P-CCPCH/PRACH/SCCPCH) for UE(in CONNECTED mode), in the absence of SIB6, UE need to use SIB5
SIB7carry fast changing cell parameter informations(uplink interference levels,dynamic persistence value)
SIB8carry static information for CPCH (only for FDD use)
SIB9carry dynamic information for CPCH (only for FDD use)
SIB10DRAC procedure related information(sent over FACH channel)
SIB11carry measurement control information(UE in IDLE mode), If SIB12 is absent it is also used for UE in CONNECTED mode.
SIB12carry measurement control information(UE in CONNECTED mode), If SIB12 is absent, SIB11 can be used by UE
SIB13-SIB13.4carry ANSI-41 parameter related informations used for ANSI-41 core networks.
SIB14carry outer loop power control information(TDD mode use only),used over dedicated and common physical channels.
SIB15-SIB15.4carry information used for UE positioning methods(e.g. GPS/OTDOA)
SIB16carry information related to channel configuration used for handover
SIB17carry information on shared common channels(to be used in CONNECTED mode,TDD use)
SIB18carry PLMN identities of neighbouring cells(used by UE in IDLE/CONNECTED MODE)











Search Another

Amazone Stores

Blog search